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102 Technology focus: Process optimization

How AI and ML can save
$38bn for semiconductor
manufacturers

Atonarp’s CEO Prakash Murthy explains how artificial intelligence and
machine learning can be used for semiconductor manufacturing equipment

and process co-optimization.

riority for semiconductor fabs, as they work to
overcome the challenges of the global chip
shortage.

Looking beyond throughput, there are significant
eppertunities for long-term cest savings from optimiz-
ing, simplifying or removing processing steps. We call
this approach EPCO - Equipment and Process Co-Opti-
mization. It Is a combination of good engineering and
applying data-driven machine learning (ML) to the
manufacturing process and equipment.

A 2021 paper by McKinsey argued that semiconduc-
tor manufacturing optimization, using artificial intelli-
gence (AI) and machine lsarning (ML), could save
$38bn, through improved yields and increased
throughput.

Real-time, accurate and actionable data is vital to
achieving this potential. McKinsey highlighted that the
single most important point to address is the real-time,
run-to-run adjustment of tool parameters, using live
in-situ tool sensor data. This enables AI/ML algorithms
to optimize the nonlinear relationship between process
operations.

Tadlw_.r, increasing throughput Is the number-one
p
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The problem: increasing process complexity
Today's high-volume, advanced logic processes —
including Fin-FET and gate-all-around {GAA) transistors,
as well as high-aspect-ratio etch technigques used in
3D-MAND memories — require a new approach to the
established standards based on Intel's CopySmarthy!
methodology.

As process nodes have shrunk, new variables have
emerged that affect process yield, and can cause devi-
atlons even on the exact same equipment. In Figure 1,
shared in a study of machine learning for high-volume
manufacturing metrology challenges, chamber-based
effects on process critical dimensions (CD) can be
clearly sean.

Some of these critical variables that can affect
process performance Include localized virtual vacuum
|leaks, subtle reaction gas partial pressure variations,
wafer surface saturation due to changes in pumping
performance, surface reactivity due to changing wafer
temperature, chamber clean end-point, and chamber
seasoning profile.

Additional challenges — inter-layer adhesion, 300mm
wafer mechanical stresses, new atomic-level deposition
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Figure 1. Wafers of four different products from eight process chambers were evaluated above. Each chamber
is represented by a different colored dot. Based on the colored dot clustering, some chambers demonstrate
significant variation in CD values between wafers, dearly showing a chamber-related effect on the unit process,
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and etch chemistries, exotic
low-resistance contact and
fill metals, stringent cross-
contamination protocols,
and maximizing throughput
— all require greater insight
into how the process and
equipment are interacting.
Optimizing advanced
precesses such as these
now demand higher-
accuracy metrology tools an
and add a new layer of
in-situ molecular complexity.

The solution

We can improve semicon-
ductor metrology In twe
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ways: either by capturing  Figure 2. As process geometries shrink, the effects of equipment variation on

better data with more
sensitive metrology tocls or EPCO Zone.

by extracting more value

from existing data with new ML algorithms. Of course,
if we can do both, we may well see the biggest
improvements,

Either way, for successful Al/ML deployment, it's vital
to have truly actionable real-time data. This enables
appropriate models to be created and tested with data
comelation batween real-world and ML model inputs
and outputs.

For exarnple, statistical process controls can look at
the real effects of chamber-to-chamber, machine-to-
machine and run-to-run performance variances, even
en the exact same eguipment with the same recipe.
Chamber cleaning and seasoning have material effects
on chamber performance and drift in process results
(process margins) between cleans, and PM (perform-
ance management) cycles are common. The difference
is that, at mature nodes like 40nm, the differences
run-te-run are small compared with the process control
limits. Howewver, as process geometries shrink, so do
process contral margins and the chamber and equipment
effects (sigma variation) become increasingly critical
(sea Figure 2),

Process control has become a lot more complicated as
critical dimensions have shrunk, along with the margin
for error. This means that individual chamber manage-
ment is becoming fundamental to ensuring high line-
yield, with tight statistical precess control.

This is what EPCO is all about: leveraging ML to
jointly optimize equipment, chambers and processes in
unison.

In-situ, real-time data

There are three main types of data In the semiconductor
process control envirenment:

process margins drive the need for equipment process co-optimization within the

1. in-situ data taken real-time on the process tool;

2. In-line data to measure results (usually immediately)
after a processing step;

3. parametric or post-fab data (used for wafer line-yield
and wafler ship acceptance criteria).

One of the fundamental changes needed to optimize
fab management Is the switch from in-line to in-situ
metrology. Measurements taken after processing is
completed are sequential in nature, costing throughput
and cycle time, and lack the immediacy to affect
meaningful real-time process change and optimization.

Measuring in-situ, real-time data at the molecular level
gives true insight to how the process is set up and pro-
ceading, offering rich, actionable and impactful data.
Reactants, by-products and partial products can be
identified and quantified, allowing for dynamic process
control to ensure tight mean and standard deviation
contrel for a given process module across run-to-run,
chamber-to-chamber, toolk-to-tool and even site-to-site.

Managing overall complex semiconductor process
cantrol and line-yield starts with having tight control
on individual process steps and ensuring low variability
and precise statistical process control (SPC). In-situ
data from processing chambers can be used with
machine learning to improve linearity and accuracy,
and to achieve the control required.

Molecular sensor

Atonarp has spent a lot of time understanding the fab
and equipment manufacturers’ problems and challenges.
The result of those efforts is the Aston, a robust
molecular sensor.

Aston provides the accurate, actionable, real-time
data that's critical for effective EPCO. This data enables
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